

GIS for mineral potential modeling: An overview

Alok Porwal

CSRE, IIT Bombay Adjunct University of Western Australia

ACKNOWLEDGEMENTS

Aurore Joly, UWA Cam McCuaig, UWA

OUTLINE

- GIS-based mineral potential mapping: A broad overview
- Example from Tanami Orogen, Western Australia (if time permits)

Introduction: what is mineral potential mapping? Mathematical-model based integration of derivative GIS layers representing geological processes that form mineral deposits

Δ

CENTRE

Indian Institute of Technology Bombay

- Input spatial datasets
- parameters
- Categoric or numeric
- Binary or multi-class

Output mineral potential map

• Grey-scale or binary

Garbage In, Garbage Out

CENTRE OF STUDIES IN RESOURCES ENGINEER

Indian Institute of Technology Bombay

Good Data In, Good Resource Appraisal Out

Selection of Predictor Maps: Systematic Analysis of

12

Exploration Data

Selection of Predictor Maps: Systematic Analysis of

Exploration Data

Example: Rock competency as an exploration criteria for metal trap

GIS-based mineral resource potential mapping Modelling approaches

Exploration datasets with homogenous coverage – required for all models

- Expert knowledge (a knowledge base) and/or
- Mineral deposit data

Training data

20

CENTRE OF STUDIES IN RESOURCES ENGINEERING

Indian Institute of Technology Bombay Expert knowledge

Data-driven	Hybrid	Knowledge-driven
Model parameters estimated from <u>mineral</u> <u>deposits data</u> (Known deposits required) Brownfields exploration Examples - Weights of evidence, Bayesian classifiers, NN, Logistic Regression	Model parameters estimated from both <u>mineral deposits data</u> and <u>expert knowledge</u> (Known deposits necessary) Semi-brownfields to brownfields exploration Examples – Neuro-fuzzy systems	Model parameters estimated from <u>expert</u> <u>knowledge</u> (Known deposits not necessary) Greenfields exploration Examples – Fuzzy systems; Dempster-Shafer belief theory

Mineral Potential Modeling

Au prospectivity mapping of Tanami Orogen, Western Australia

(Porwal, Joly, McCuaig)

(Joly et al., 2010; Ore Geology Reviews)

Indian Institute of Technology Bomba

Bombay

CENTRE OF STUDIES IN RESOURCES FNGINEER

Geological Setting

Structural Map (Based on 3D Modeling) 25

Orogenic gold mineral system

Critical Processes	ises Source		Active Pathway		Physical Trap		Chemical Scrubber	
Constituent process	Granite source involved	no granite source involved	Fundamental structure	Structure has acted as pathway	Threshold barriers	Breaching zones	Reactive rocks	evidence of reaction
Targeting elements	roof of granite proximity to granite	no indication on scale of West Tanami for more or less favourable source region	interpreted pre D2 history connectivity to deep structures	controls 1800 Ma granites (broadly same timing as mineralisation) extensive quartz veins metal anomalism along structure	Zones of increased compression Competency contrast Anticlines (D1, D2)	fault intersections Fault jogs Fault tips/splays	Stubbins (by analogy to largest deposit Callie; Fe- rich lithologies, more reactive than Killi Killi) magnetic haloes to granites dolerite density	metal anomaliles
					ST/KK contact	strain shadows (granites)		
Proxies	gravity low and mag high		gravity high (D1)	geology mapping (veins)	N side of D2 thrusts	structure interpretation	aeromagnetics	drilling/geochem assays
			Steep gravity gradient (De)	drilling/geochem assays	gravity highs delineate D1 anticlines	gravity highs delineate D1 anticlines cored by thrusts		alteration (not available)
			Magnetics (D2)	spectral data (not available)	E-W structures under compression			
			Seismic (deep features correlated with, and traced through, Mag/gravity)		geology map			

	Mineral Exploration criteria systems component		Predictor Maps	Details		
	Source	Proximity to granite	(1) Proximity to granite	Granite buffered to 11000 m		
IN	Pathways	Proximity to faults	(2) Proximity to De fault	De structures buffered to 12000 m		
DIES			(3) Proximity to D1 fault	D1 faults buffered to 7500 m		
F STU s EN			(4) Proximity to D2 fault	D2 faults buffered to 8000 m		
ENTRE O			(5) Proximity to D2 fault related to De faults	D2 structures related to De buffered to 14.6k		
5 N N N N			(6) Proximity to D2 fault intersection	D2 intersections buffered to 7.5km		
			(7) Proximity to D2 and D1 fault intersection	D1 x D2 intersections buffered to 8000 m		
		Proximity to structure with elevated gold values	(8) Proximity to structure with elevated Au values	Faults buffered to 1 km and attributed with Au values interpolated from drill hole data+surface geochem		
	Chemical Trap	Chemical contrast at geological contacts	(9) Chemical contrast density	Density of geological contacts weighted by chemical contrast		
of how			(10) Chemical contrast across contact	Chemical contrast across geological contacts		
ute			(11) Dolerite density	Density of dolerite contacts		
stit			(12) Killi-Killi Formation (Geology)	Extracted from geological map directly		
an In alor		Proximity to anticlinal fold axis	(13) Proximity to D1 anticlinal fold axis	D1 anticlines buffered to 800m		
Findia C			(14) Proximity to D2 anticlinal fold axis	D2 anticlines buffered to 600m		
			(15) Stubbins Formation (Geology)	Extracted from geological map directly		
A	Physical Trap	Physical contrast at geological contacts	(16) Competency contrast density	Density of geological contacts weighted by competency contrast across the contacts.		
and and			(17) Competency contrast	Competency contrast across geological contacts		

SOURCE PREDICTORS

CENTRE OF STUDIES IN RESOURCES ENGINEERING Indian Institute of Technology Bombay

PATHWAY PREDICTORS

N

D2 fault

High : 46 kn

Low : 0

129"0'0"E

128°0'0"E

CHEMICAL TRAP PREDICTORS

FUZZY MODEL

- Estimate expert-knowledge-based fuzzy membership values to predictor maps
- Combine predictor maps using fuzzy inference networks

CENTRE OF STUDIES IN RESOURCES ENGINEERING 33

FUZZY MODEL - ASSIGN EXPERT KNOWLEDGE BASED RANKS

				Fuzzy model				
_		D		Fuzzy membership value (expert- knowledge based weight)	Confidence factor	Fuzzy membership value (expert- knowledge +confidence factor based weight)	rationale for expert-knowledge based weight (fuzzy membership values)	Rationale for confidence factor
1		Chemical Contrast dens	0.8	0.6	0.48	conceptually a good predictor in terms of Fe for sulphidation reactions	Interpreted relative values, not directly measured	
2		Competency contrast		0.9	0.6	0.54	good predictor of fluid focus sites	Interpreted relative values, not directly measured
3	,	Competency contrast density		0.9	0.6	0.54	High density of competency contrast means more variation of comptency in rocks, and hence more fluid focus sites	Interpreted relative values, not directly measured
4		Dolerite density		0.7	0.6	0.42	Higher reactivity across dolerite contacts	Interpreted geology used; insufficient data, scale issues)
5		Geology	кк	0.5	0.7	0.35	monotonous sequence	Interpreted geology used
5			Stubbins	0.8	0.7	0.56	contrasted lithology due to the BIF/sediment alternance and large gz veins	Interpreted geology used
2 6		D1 anticlines		0.6	0.7	0.42	good sites for fluid ponding	based largely on mapped geology and magnetics,

Summary

- GIS-based mineral potential modeling leads to effective narrow down of search areas for ground exploration, thus significantly reducing the cost of ground exploration
- Correct genetic conceptual modeling forms the foundation of a good mineral potential model
- Appropriate derivative GIS layers should be generated using geoprocessing tools (making sure that the layers represent the mineralization processes.
- A variety of spatial mathematical models are available: select the appropriate model based on your data and whether it is a greenfields or brownfields scenario.

Special issues of **Ore Geology Reviews** on GIS-based mineral potential modeling Editors: Porwal and Kreuzer (2010) and Porwal and Carranza (2015)

CENTRE OF STUDIES IN RESOURCES ENGINEERING

